Вещества радиоактивные: примеры, применение, опасность

Содержание

Вещества радиоактивные: примеры, применение, опасность

Вещества радиоактивные: примеры, применение, опасность

Радиация, радиоактивность и радиоизлучение — понятия, которые даже звучат достаточно опасно. В этой статье вы узнаете, почему некоторые вещества радиоактивные, и что это значит. Почему все так боятся радиации и насколько она опасна? Где мы можем встретить радиоактивные вещества и чем нам это грозит?

Понятие радиоактивности

Радиоактивностью называю «умение» атомов некоторых изотопов расщепляться и создавать этим излучения. Термин «радиоактивность» появился не сразу. Изначально такое излучение называли лучами Беккереля, в честь ученого, открывшего его в работе с изотопом урана. Уже теперь мы называем этот процесс термином «радиоактивное излучение».

В этом достаточно сложном процессе изначальный атом превращается в атом совсем другого химического элемента. За счет выбрасывания альфа- или бета-частиц, массовое число атома изменяется и, соответственно, это перемещает его по таблице Д. И. Менделеева. Стоит заметить, что массовое число изменяется, но сама масса остается практически такой же.

Опираясь на данную информацию, можем немного перефразировать определение понятия. Итак, радиоактивность — это также способность неустойчивых ядер атомов самостоятельно превращаться в другие, более стабильные и устойчивые ядра.

Вещества — что это такое?

Перед тем как говорить о том, что такое вещества радиоактивные, давайте вообще определим, что называется веществом. Итак, в первую очередь, это разновидность материи. Логичным есть и тот факт, что эта материя состоит из частиц, и в нашем случае это чаще всего электроны, протоны и нейтроны. Здесь уже можно говорить об атомах, которые состоят из протонов и нейтронов. Ну а из атомов получаются молекулы, ионы, кристаллы и так далее.

Понятие химического вещества основывается на этих же принципах. Если в материи невозможно выделить ядро, то ее нельзя причислить к химическим веществам.

О радиоактивных веществах

Как уже говорилось выше, чтобы проявлять радиоактивность, атом должен самопроизвольно распадаться и превращаться в атом совсем другого химического элемента. Если все атомы вещества нестабильны до такой степени, чтобы распасться таким образом, значит перед вами радиоактивное вещество. Более техническим языком определение прозвучало бы так: вещества радиоактивные, если они содержат радионуклиды, причем в высокой концентрации.

Где в таблице Д. И. Менделеева находятся радиоактивные вещества?

Довольно простой и легкий способ узнать, относиться ли вещество к радиоактивным, это посмотреть в таблицу Д. И. Менделеева. Все, что находится после элемента свинец — это радиоактивные элементы, а также еще прометий и технеций. Важно помнить, какие вещества радиоактивные, ведь это может спасти вам жизнь.

Существует также ряд элементов, которые имеют хотя бы один радиоактивный изотоп в своих природных смесях. Вот их неполный список, где указаны одни из самых распространенных элементов:

К радиоактивным веществам относятся те, которые содержат любые радиоактивные изотопы.

Виды радиоактивного излучения

Радиоактивное излучение бывает нескольких типов, о которых сейчас и пойдет речь. Уже упоминалось альфа- и бета-излучение, но это не весь список.

Альфа-излучение — это самое слабое излучение, которое представляет опасность в том случае, если частицы попадают непосредственно в тело человека. Такое излучение реализуется тяжелыми частицами, и именно поэтому легко останавливается даже листом бумаги. По этой же причини альфа-лучи не пролетают больше 5 см.

Бета-излучение более сильное, чем предыдущее. Это излучение электронами, которые намного легче альфа-частиц, поэтому могут проникать на несколько сантиметров в кожу человека.

Гамма-излучение реализуется фотонами, которые достаточно легко проникают еще дальше к внутренним органам человека.

Самое мощное по проникновению излучение — это нейтронное. От него спрятаться достаточно сложно, но в природе его, по сути, и не существует, разве что в непосредственной близости к ядерным реакторам.

Воздействие радиации на человека

Радиоактивно опасные вещества часто могут быть смертельными для человека. К тому же радиационное облучение имеет необратимый эффект. Если вы подверглись облучению, значит, вы обречены. В зависимости от масштабов повреждения, человек погибает в течение нескольких часов или на протяжении многих месяцев.

Вместе с этим нужно сказать, что люди непрерывно подвергаются радиоактивному излучению. Слава Богу, оно достаточно слабое, чтобы иметь летальный исход. Например, посмотрев футбольный матч по телевиденью, вы получаете 1 микрорад радиации. До 0,2 рад в год — это вообще естественный радиационный фон нашей планеты. 3 дар — ваша порция радиации при рентгене зубов. Ну а облучение свыше 100 рад уже является потенциально опасным.

Вредные радиоактивные вещества, примеры и предостережения

Самое опасное радиоактивное вещество — это Полоний-210. Из-за излучения вокруг него даже видно своеобразную светящуюся «ауру» голубого цвета. Стоит сказать о том, что существует стереотип, будто все радиоактивные вещества светятся. Это совсем не так, хотя и встречаются такие варианты, как Полоний-210. Большинство радиоактивных веществ внешне совсем не подозрительные.

Самым радиоактивным металлом на данный момент считают ливерморий. Его изотопу Ливерморию-293 достаточно 61 миллисекунды, чтобы распасться. Это выяснили еще в 2000 году. Немного уступает ему унунпентий. Время распада Унунпентия-289 составляет 87 миллисекунды.

Также интересный факт состоит в том, что одно и то же вещество может быть как безвредным (если его изотоп стабильный), так и радиоактивным (если ядра его изотопа вот-вот разрушатся).

Ученные, которые изучали радиоактивность

Вещества радиоактивные долгое время не считались опасными, и потому из свободно изучали. К сожалению, печальные смерти научили нас тому, что с такими веществами нужна осторожность и повышенный уровень безопасности.

Одним их первых, как уже упоминалось, был Антуан Беккерель. Это великий французский физик, которому и принадлежит слава первооткрывателя радиоактивности. За свои заслуги он удостоился членства в Лондонском королевском обществе. Из-за своего вклада и эту сферу он скончался достаточно молодым, в возрасте 55 лет. Но его труд помнят по сей день. В его честь были названа сама единица радиоактивности, а также кратеры на Луне и Марсе.

Не менее великим человеком была Мария Склодовская-Кюри, которая работала с радиоактивными веществами вместе со своим мужем Пьером Кюри. Мария также была француженкой, хоть и с польскими корнями. Кроме физики она занималась преподаванием и даже активной общественной деятельностью. Мария Кюри — первая женщина лауреат Нобелевской премии сразу в двух дисциплинах: физика и химия. Открытие таких радиоактивных элементов, как Радий и Полоний, — это заслуга Марии и Пьера Кюри.

Заключение

Как мы видим, радиоактивность — достаточно сложный процесс, который не всегда остается подконтрольным человеку. Это один из тех случаев, когда люди могут оказаться абсолютно бессильными перед лицом опасности. Именно поэтому важно помнить, что действительно опасные вещи могут быть внешне очень обманчивыми.

Узнать вещество радиоактивное или нет, чаще всего можно уже попав под его воздействие. Поэтому будьте осторожны и внимательны. Радиоактивные реакции во многом нам помогают, но также не стоит забывать, что это практически не подконтрольная нам сила.

К тому же стоит помнить вклад великих ученных в изучение радиоактивности. Они передали нам невероятно много полезных знаний, которые теперь спасают жизни, обеспечивают целые страны энергией и помогаю лечить страшные заболевания. Радиоактивные химические вещества — это опасность и благословение для человечества.

роо. Роо. Общая характеристика и примеры Радиационноопасный объект роо

НазваниеРоо. Общая характеристика и примеры Радиационноопасный объект роо
Дата29.08.2019
Размер33.39 Kb.
Формат файла
Имя файлароо.docx
ТипДокументы
#85524
Подборка по базе: ответы тесты общая гигиена.docx, Отрасли права. Характеристика основных отраслей. Правовой инстит, Р 50.1.087-2013 Статистические методы. Примеры применения. Часть, Быков Цитология и общая гистология.pdf, Медицинская биология и общая генетика.pdf, ФЕДЕРАЛЬНЫЕ ОРГАНЫ ГОСУДАРСТВЕННОГО РЕГУЛИРОВАНИЯ ЭКОНОМИКИ И ИХ, Теоретическая характеристика детских лекарственных форм.docx, КВАЛИФИКАЦИОННАЯ ХАРАКТЕРИСТИКА МАГИСТРА.docx, Учение о болезни, общая этиология, общий патогенезМетодические м, Общая характеристика.docx.
  1. РОО. Общая характеристика и примеры

Радиационно-опасный объект (РОО) – объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов экономики, а также окружающей природной среды.

Основную и главную группу РОО по степени их потенциальной опасности загрязнения природной среды представляют предприятия ядерного топливного цикла (ЯТЦ). Это предприятия по получению, применению, переработке, хранению и захоронению ядерных материалов. Наиболее широкое применение полученные ядерные материалы находят в ядерных энергетических реакторах на атомных станциях.

К типовым РОО относятся:
– атомные станции;
– предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;
– предприятия по изготовлению ядерного топлива;
– научно-исследовательские и проектные организации, имеющие ядерные установки и стенды;
– транспортные ядерные энергетические установки;
– военные объекты.

  1. Потенциальные > Выполнил студент 128 группы Проверил”>опасности на радиационно-опасных объектах

Потенциальная опасность РОО определяется количеством радиоактивных веществ,’которое может поступить в окружающую среду в результате аварии на РОО. А это в свою очередь зависит от мощности ядерной установки.

  1. Радиационная авария. Причины аварий на роо.

Радиационная авария — потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

1. нарушения технологической дисциплины оперативным персоналом АС и недостатка в его профессиональной подготовке;

2. низкий уровень внимания и требовательности со стороны министерств и ведомств, организаций и учреждений, ответственных за обеспечение безопасности АС на этапах проектирования, строительства и эксплуатации

  1. Поражающие факторы при авариях на роо

1.Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно
2.Световое излучение.
3.Электромагнитный импульс
4.Проникающая радиация, может оказать воздействие, в основном, на работающую смену персонала.
5. Радиоактивное заражение местности в результате выбросов продуктов распада в атмосферу во всех случаях будет значительным и на больших площадях.

  1. Типы радиационных аварий по различным признакам

Типы радиационных аварий определяются используемыми в народном хозяйстве источниками ионизирующего излучения, которые можно условно разделить на следующие группы: ядерные, радиоизотопные и создающие ионизирующее излучение за счет ускорения (замедления) заряженных частиц в электромагнитном поле (электрофизические).

Имеются также специальные технологии, связанные с уничтожением ядерных боеприпасов, снятием с эксплуатации исчерпавших эксплуатационный ресурс реакторов, проводящимися в интересах народного хозяйства ядерными взрывами и др.

  1. Фазы радиационных аварий

Фазы: 1) Ранняя:Характеристика фазы: Завершение формирования первичного следа радиоактивного облака. Наибольшая интенсивность радиационного воздействия на население и окружающую среду. Продолжительность до 10 суток. Пути воздействия: Внешнее гамма- и бета-облучение от радиоактивного облака и радиоактивное загрязнение местности. Внутреннее облучение за счет ингаляционного поступления РВ.

2) Средняя (промежуточная): Характеризуется наличием строгих ограничений жизнедеятельности населения в зоне РЗМ и системой контроля радиационной обстановки до принятия всех мер по защите населения. Продолжительность до одного года. Пути воздействия: Внешнее гамма-облучение от РЗМ. Внутреннее – за счет ингаляционного воздействия и перорального поступления радионуклидов с вдыхаемым воздухом и пищей.

3) Поздняя: Характеризуется восстановлением обычной системы жизнедеятельности и контроля радиационной обстановки. Продолжительность: До снятия всех ограничений. Пути воздействия: Внешнее гамма-облучение от РЗМ. Внутреннее – за счет ингаляционного воздействия и перорального поступления радионуклидов с вдыхаемым воздухом и пищей.

  1. Радиоактивность, период полураспада радионуклидов

ПЕРИОД ПОЛУРАСПАДА радионуклида — время, в течение которого количество данного радионуклида в результате самопроизвольных ядерных превращений уменьшается в два раза.

Радиоактивность — это самопроизвольное превращение неустойчивых атомных ядер в другие, более устойчивые ядра с выделением в окружающую среду энергии в виде ионизирующего излучения.

Радионуклиды — это атомы с с нестабильными ядрами, которые невольно превращаютсяв более устойчивые ядра атомов других химических элементов или других изотопов того же элемента с выделением в окружающую среду энергии в виде ионизирующегоизлучения.

a-Излучение отклоняется электриче­ским и магнитным полями, обладает высо­кой ионизирующей способностью и малой проникающей способностью (например, поглощаются слоем алюминия толщиной примерно 0,05 мм). a-Излучение представ­ляет собой поток ядер гелия; заряд a-частицы равен + 2е, а масса совпадает с массой ядра изотопа гелия 4 2Не.

b-Излучение отклоняется электриче­ским и магнитным полями; его ионизирую­щая способность значительно меньше (примерно на два порядка), а проникаю­щая способность гораздо больше (погло­щается слоем алюминия толщиной при­мерно 2 мм), чем у a-частиц. b-Излучение представляет собой поток быстрых элек­тронов (это вытекает из определения их удельного заряда).

g-Излучение не отклоняется электри­ческим и магнитным полями, обладает от­носительно слабой ионизирующей способ­ностью и очень большой проникающей способностью (например, проходит через слой свинца толщиной 5 см), при прохож­дении через кристаллы обнаруживает дифракцию. g-Излучение представляет со­бой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны l -10 м и вследствие этого — ярко выраженными корпускулярными свойствами, т. е. является потоком частиц — g-квантов (фотонов).

9)Поглощенная, экспозиционная, эквивалентная дозы излучения. Отличительные особенности, единицы измерения.

Поглощенная доза – это количество энергии ионизирующего излучения, поглощенное облучаемым телом (тканями организма) и рассчитанной на единицу массы этого вещества. Единица поглощенной дозы в Международной системе единиц (СИ) – грей (Гр).

Для оценки еще используют и внесистемную единицу – Рад. Рад – образовано от английского «radiationabsorbeddoze» – поглощенная доза излучения. Это такое излучение, при котором каждый килограмм массы вещества (скажем, человеческого тела) поглощает 0.01 Дж энергии (или 1 г массы поглощает 100 эрг).

1 Рад = 0.01 Дж/кг 1 Гр = 100 Рад

  1. Экспозиционная доза

Для оценки радиационной обстановки на местности, в рабочем или жилом помещениях, обусловленной воздействием рентгеновского или гамма-излучения, используют экспозиционную дозуоблучения. В системе СИ единица экспозиционной дозы – кулон на килограмм (1 Кл/кг).

На практике чаще используют внесистемную единицу – рентген (Р). 1 рентген – доза рентгеновских (или гамма) лучей, при которой в 1 см 3 воздуха образуется 2.08 х 10 9 пар ионов (или в 1 г воздуха – 1.61 х 10 12 пар ионов).

1 Р = 2.58 х 10 -3 Кл/кг

Поглощенной дозе 1 Рад соответствует экспозиционная доза, примерно равная 1 рентгену: 1 Рад = 1 Р

  1. Эквивалентная доза

При облучении живых организмов возникают различные биологические эффекты, разница между которыми при одной и той же поглощенной дозе объясняется разными видами облучения.

Для сравнения биологических эффектов, вызываемых любыми ионизирующими излучениями, с эффектами от рентгеновского и гамма-излучения, вводится понятие об эквивалентной дозе. В системе СИ единица эквивалентной дозы – зиверт (Зв). 1 Зв = 1 Дж/кг

Существует также внесистемная единица эквивалентной дозы ионизирующего излучения – бэр (биологический эквивалент рентгена). 1 бэр – доза любого излучения, которая производит такое же биологическое действие, как рентгеновское или гамма-излучение в 1 рентген.

1 бэр = 1 Р 1 Зв = 100 бэр

10)Последствия воздействия проникающей радиации на биологические объекты и неживые материалы.

проникающая радиация- это интенсивное гамма-излучение, сопровождаемое потоком нейтронов, которые испускаются из зоны ядерного взрыва в течение короткого промежутка времени – единиц и десятков секунд. Она является основной причиной развития лучевой болезни

В результате такого «преобразования» нарушаются физико-химические и биологические процессы в живых тканях и материалах, разрушается кристаллическая решетка, происходит изменение молекулярной структуры. Радиус поражения проникающей радиации значительно меньше, чем световым излучением или ударной волной. Наиболее опасными являются зоны, находящиеся в пределах 2-3 км от эпицентра взрыва. Это связано с тем, что потоки элементарных частиц интенсивно поглощаются атмосферой.


11) Лучевая болезнь (механизм возникновения, степени), наведенная радиация.

Лучевая болезнь – общее заболевание, вызываемое влиянием на организм радиоактивного излучения в диапазоне, превышающем предельно допустимые дозы.
Патогенез (механизм развития) Лучевой болезни :

Лучевая болезнь подразделяется на острую (подострую) и хроническую формы в зависимости от временного распределения и абсолютной величины лучевой нагрузки, определяющих динамику развивающихся изменений. Своеобразие механизма развития острой и хронической лучевой болезни исключает переход одной формы в другую. Условным рубежом, отграничивающим острые формы or хронических, является накопление в течение короткого срока (от 1 ч до 1–3 дней) общей тканевой дозы, эквивалентной таковой от воздействия 1 Гр внешнего проникающего излучения.

Развитие ведущих клинических синдромов острой лучевой болезни зависит от доз внешнего облучения, обусловливающих разнообразие наблюдающихся поражений. Кроме того, играет немаловажную роль и вид излучения, каждому из которых свойственны определенные особенности, с которыми связаны различия в их повреждающем действии на органы и системы.

Повреждение органов желудочно-кишечного тракта, различных структур как головного, так и спинного мозга, а также органов кроветворения является характерным для воздействия вышеуказанных доз облучения. Степень выраженности таких изменений и быстрота развития нарушений зависят от количественных параметров облучения.

четвертая – от 6 Гр.

Первая степень Первыми признаками лучевой болезни является тошнота

Вторая степень К симптомам второй степени радиации относятся: высыпания на коже; нарушение движений; снижение рефлексов; спазм глаз; облысение; падение артериального давления; признаки, характерные для первой степени.

Третья степень Признаки третьей степени поражения организма человека радионуклидами зависят от важности пораженных органов и их функций.

Четвертая степень Острая лучевая болезнь возникает на четвертой степени облучения. Кроме появления у человека непреодолимой слабости, появляются другие симптомы острого лучевого заболевания: Повышение температуры.

Наведенная радиоактивность – это искусственно возникающая при облучении нейтронами радиоактивность воздуха, воды, почвы, материалов и др. В результате захвата нейтронов ядра многих химических элементов становятся радиоактивными и распадаются путем испускания бета-частиц и гамма-квантов с присущим данному изотопу периодом полураспада.

12) Ядерный реактор. Водно-водяные энергетические реакторы (ВВЭР), реакторы большой мощности канальные (РБМК).

Я́дерный реа́ктор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии.

ВВЭР (В одо-В одяний Е нергетичний Р еактор) – ядерный реактор, теплоносителем и замедлителем в котором служит вода под давлением. Реактор с сжатой водой – это реактор, в котором вода находится под достаточным давлением для предотвращения ее закипания и одновременно обеспечивает высокую температуру теплоносителя (более 300 гр по цельсии) .

Осторожно, опасность радиоактивного заражения!

Содержание статьи:

Здесь не слышно выстрелов, взрывов, движения военной техники. Невидимая опасность поджидает человека, животных за каждым кустом. Среди полян, наполненных цветами, ягодами, грибами. Имя явления — радиация. Таинственные лучи, идущие от радиоактивных элементов во время распада, не разрешают использовать страшную зону с радиоактивным заражением для жизни людей. Быстро и незаметно они могут разрушить организм, ухудшить здоровье.

Что такое радиация

Открытие радиоактивности связано с работами лауреата Нобелевской премии по физике немецкого учёного Вильгельма Рентгена, французского физика Беккереля. Исследователи изучали строение атома, процессы, происходящие внутри химических элементов. Термин радиоактивность, обозначающий превращение ядер в иные ядра, сопровождающийся излучением, введён Марией Кюри. При распаде определённых элементов, называемых радионуклидами, появляются разные частицы, отличающиеся запасом энергии. Поток таких частиц назвали радиацией.

Человек каждый день сталкивается с действием радиоактивного излучения, образующегося в природных условиях из элементов, входящих в структуру земли. Вода, воздух, почва содержат около 60 видов веществ, создающих естественный фон ионизирующего излучения. Например, радон, образующийся в почве, в глубоких артезианских скважинах, горных породах. Он считается важным источником вредного излучения. Лучи из космоса, создающие на больших высотах опасный уровень радиации. Максимальный процент радиации поступает из источников, созданных человеком. Это диагностика современным медицинским оборудованием, системы получения ядерной энергии, испытание разрушительного оружия. С точки зрения появления случаев воздействия вредным излучением существуют следующие варианты:

  1. Запланированное, строго регламентированное воздействие во время диагностики заболеваний на медицинском оборудовании.
  2. Воздействие известных источников радиации естественного происхождения. Например, в жилье, у рабочих мест за счёт использования конкретных строительных материалов, специальных приборов, фонового излучения окружающей среды. Всегда предусматриваются специальные меры контроля, защиты.
  3. Воздействие в случае чрезвычайных происшествий при ядерных катастрофах, зло направленных действий, являющихся причиной радиоактивного заражения местности. Благодаря таким событиям и появился на нашей планете предупреждающий знак: опасная зона, радиация.

Радиоактивное заражение окружающей среды. Характеристика зон радиоактивного заражения


Страшное явление современности создается за счёт осаждения радиоактивных химических элементов из ядерного гриба, появляющегося в результате необдуманной деятельности, ошибок человека. Большая площадь на протяжении многих лет становится опасной зоной радиоактивного заражения местности. Формирование состава радиоактивного загрязнения происходит за счёт наличия альфа, бета, гамма-лучей. Опасное облако разносится ветром на большие расстояния. В первое время (20 часов после взрыва), из него выпадает основная масса радиоактивных соединений. Степень заражения, масштабы зависят от погоды, ландшафта, силы взрыва. Принято выделять зоны радиоактивного загрязнения по величине возникшей радиации. Умеренного (обозначается синим цветом), сильного (зелёный цвет), опасного (красный цвет), чрезвычайно сильного радиоактивного загрязнения, обозначаемого зловещим чёрным цветом . Характеристику зон радиоактивного заражения определяет количественное значение уровня радиации. В первой зоне радиоактивного заряжения он после взрыва составляет 8 Р/ час. Через 10 часов уровень снижается до 0.5 Р/ час. Значения радиации второй зоны возрастают в 10 раз. В третьей зоне сразу после взрыва фиксируется радиация 240 Р/ час. В четвёртой зоне величина радиоактивного загрязнения среды становится равной 4000 Р/ час.

В заражённой зоне появляются следующие радиоактивные элементы:

  1. Йод-131. Излучает бета, гамма-лучи, наиболее опасные для живых существ. Период полураспада составляет 8 суток. Вызывает гибель, мутацию клеток. Основная концентрация происходит в щитовидной железе.
  2. Стронций-90. Период полураспада длится 29 лет. Опасность представляет для костных тканей. Попадает в окружающую среду во время аварий на АЭС, ядерных взрывах современного оружия.
  3. Цезий-137. Элемент с периодом полураспада 30 лет считается главным компонентом радиоактивного заражения окружающей среды.

Кобальт (период полураспада около 6 лет), америций-241, живущий 433 года, заполняют радиоактивную зону, существующую рядом с человеком. Свойством радиоактивных элементов является создание энергетических лучей, проникающих на разную глубину. Они оказывают на живые клетки разное действие. Альфа излучение задерживается простым листом бумаги, не проникая через кожу человека. Вред оно принесёт только когда радиоактивные вещества, их излучающие, попадут внутрь организма. Это происходит через открытые раны, с пищей, водой, воздухом. Бета излучение характеризуется большей проникающей способностью. В зависимости от энергетических запасов, оно проходит на глубину около 10 см. Самое страшное гамма-излучение, распространяющееся со скоростью света, могут задержать только мощные бетонные стены и свинец.

Тяжёлыми катастрофами, приведшими к сильному радиоактивному загрязнению среды, считаются авария на Чернобыльской АЭС, японской станции Фукусима, испытания ядерного оружия в городах Японии. Полигон под Семипалатинском, утечка радиоактивных отходов в Челябинской области, секретные полигоны Америки, Кореи. Некоторыё аварии стали достоянием гласности спустя многие годы. Думается, что секретные области с опасностью радиоактивного загрязнения есть и сейчас. Запрещающие знаки, определяющие смертельную зону, ставились везде. Не всегда они решали вопросы безопасности местного населения.

Действие радиации на организм

Последствие радиоактивного загрязнения сказывается на здоровье человека в самых тяжелых вариантах последствий. Ожог кожи, лучевое облучение, разрушения костей, изменение состава крови возникает при превышении радиации допустимого уровня. При этом низкие дозы, полученные от радиоактивных элементов, увеличивают риск возникновения разных заболеваний, например, рака. Полученную организмом дозу, принято классифицировать по физической величине измерения, называемой Зиверт. Это эффективная единица измерения, позволяющая оценить силу ионизирующего излучения с точки зрения объёма нанесённого вреда. Абсолютное значение зиверта является большим. На практике используются миллизиверт(мЗв), микрозиверт (мкЗв).

Физический смысл действия радиации состоит в реализации следующих явлений:

  1. Электрического взаимодействия с тканями. За очень короткий срок прохождения излучения через органы, ткани человека оно провоцирует ионизацию атомов, разрушая живые клетки.
  2. Физико-химические реакции. Ионизированный атом, появившийся свободный электрон не могут долго находиться в новом состоянии. Их участие в цепи химических реакций, приводит к образованию новых молекул соединений вредных для организма, например «свободных радикалов».
  3. Химические процессы. Появившиеся «свободные радикалы» мешают нормальному функционированию живых клеток, модифицируя их. Процессы происходят в течение миллионных долей секунды.
  4. Биологические изменения. Они появляются сразу или через годы, постепенно нарушая важные процессы в любом органе человека.

Международными требованиями по защите от радиации в 1990 году, а также нормативными документами НРБ-96 (1996 г.) оговорены следующие значения доз:

  1. Значения радиации 1.5 Зв (150 бэр), полученной на протяжении года или при кратковременном облучении дозой 0,5 Зв (50 бэр) могут создать вредные эффекты.
  2. Лучевая болезнь развивается после поглощения дозы в 1-2 Зв (100-200 бэр). Получив свыше 6 Зв, состояние человека характеризуют смертельной четвёртой степенью заболевания.
  3. Естественное радиоактивное излучение имеет величину, соответствующую 0,05 до 0,2 мкЗв/ч, т.е. от 0,44 до 1,75 мЗв за год. Во время медицинской диагностики человек получает 1,4 мЗв за год.

Интересные факты о радиации

  • Элемент, открытый в первых рядах радиоактивных веществ, супругами Кюри, назван радий, что означает «испускающий, излучающий лучи».
  • Курильщик за год получает дозу радиации, полученную от 250 снимков на рентгеновском аппарате.
  • Самым радиоактивным продуктом считаются бразильские орехи. Корни деревьев доходят до глубоких слоёв земли, содержащих радиоактивный калий. Для людей доза опасности не представляет.
  • В заражённой зоне Чернобыля появился особый вид живых организмов, развивающихся в атмосфере радиации.
  • Неизвестное действие радиации на здоровье человека еще в начале XX века родило моду на изготовления многочисленных предметов, содержащих радиоактивные элементы. Косметика, сигареты, вода, продукты питания, посуда, циферблаты часов содержали опасные вещества. Радий добавлялся даже в зубную пасту, мыло.

Удивительные открытия физиков реализовались в проектах, технологиях, которые не всегда безопасны. Весь мир должен внимательно следить за их ходом.

Причины, последствия и методы борьбы с радиоактивным загрязнением

С развитием науки и технологий в прошлом веке человечество получило и новые виды проблем. Одна из них – радиоактивное загрязнение. Возникновение источника опасности связано с жизнедеятельностью по разработке ядерных видов топлива, оружия, возможными утечками при выполнении операций. Основную угрозу несет радиоактивное излучение, характеризующееся действием компонентов, имеющих длительный период распада. Радиоактивное загрязнение местности представляет непосредственную угрозу жизни и здоровью человеку, оказавшемуся в зоне действия излучения.

Основные причины загрязнения

Радиация образуется на планете в результате жизнедеятельности и космического излучения, которое не опасно для здоровья. Деятельность в сфере ядерных разработок может привести к возникновению загрязнения на любом этапе: от исследований до эксплуатации.

Основные источники радиоактивных загрязнений:

  • испытания ядерного оружия;
  • ядерные взрывы;
  • эксплуатация радиоактивных объектов;
  • могильники отходов.

Естественные источники

Некоторые источники загрязнения встречаются в естественной среде. Среди них выделяются постоянно действующие:

  • космическое излучение;
  • излучение земной коры.

В обоих случая доза облучения не угрожает жизни и здоровью человека.

Антропогенные источники

Основную угрозу радиационному фону Земли представляют действия, выполняемые людьми:

  • обработка опасных веществ;
  • развитие атомного вооружения;
  • просчеты в атомной энергетике.

Техногенные аварии

Международная организация МАГАТЭ, занимающаяся развитием атомной энергии, составила специальную семибалльную шкалу для оценки техногенных аварий. К настоящему моменту произошло только два события, получившие высшую оценку опасности:

  • авария на Чернобыльской АЭС (СССР, 1986);
  • авария на АЭС Фукусима-1 (Япония, 2011).

Последствия испытаний ядерного оружия

Если утечки радиационного загрязнения в процессе деятельности по добыче электроэнергии происходят непроизвольно, то испытания ядерного оружия – точечные действия государств.

Для радиационного фона характерно, что осадки от испытаний оружия отличаются периодом полураспада:

В первом случае опасность исходит только в течение первого времени, во втором – от накопления, непосредственного контакта.

Радиационные отходы

Ряд предприятий осуществляет деятельность в сфере обработки отходов, включая радиоактивные. Такие операторы обычно обслуживают ядерные объекты: электростанции, военные полигоны, научные лаборатории. Выделяется 3 вида радиационных отходов:

По правилам безопасности такие отходы должны обрабатываться в специальной таре, исключающей утечку сырья в окружающую среду. Применяются следующие меры по обработке: упаривание, сжигание, прессовка, захоронение в могильниках.

Утечки из реакторов или других радиоактивных источников

Добыча и переработка радиоактивного сырья

Некоторые природные материалы обладают радиоактивным излучением: радий, радон, палладий, уран. Добыча указанных материалов ведется путем вскрытия горных пород и обработки каменной массы. Добываемые породы используются и в ядерной отрасли. Например, при производстве боевых ядерных ракет применяется уран, который обогащается до необходимого значения.

Загрязняющие радиоактивные компоненты

Радиационное загрязнение состоит компонентов, формирующих опасную среду. У каждого из них собственные физико-химические характеристики, главная из которых – период полураспада. Это срок, показывающий через какое время компонент утратит свои свойства до момента расщепления на части.

Среди компонентов особенно выделяются по степени опасности и сроку полураспада:

НазваниеПериод полураспадаВозможные негативные последствия загрязнения
Америций-241433 годаСмертельная опасность
Цезий-13730 летНакопления в мышечной массе и скелете
Стронций-9028,8 летКостные отложения
Кобальт-605,3 годаТоксичное воздействие на организм
Йод-1318 днейМутации, гибель клеток и тканей.

Возможные последствия

Влияние радиоактивного загрязнение на здоровье живых организмов и природы велико. Опасные вещества легко вступают в контакт с новыми живыми формами, накапливаясь в них и разрушая изнутри. Нарушаются физические и биологические функции организмов. Некоторый уровень радиации присутствует в окружающей среде и является допустимым. Превышение уровня – проблемы для биосферы, частью которой являются люди, животные, окружающая среда.

Воздействие на человека и животных

Радиоактивное заражение попадает в живые организмы несколькими путями:

  • воздушным путем;
  • контактом через кожу;
  • через другие организмы (во время питания, например).

В зависимости от объема попадания вредных веществ начинают проявляться негативные симптомы: чем дольше контакт с источником заражения – тем серьезнее симптомы. Проявление отрицательных признаков возможно в разные временные интервалы: от нескольких минут до десятилетий.

Влияние на экологию

Местность, которая оказалась подвергнута радиоактивному заражению, остается опасной до момента полного разложения всех вредных веществ. Срок оздоровления земли может достигать сотни лет. Ситуация осложняется тем, что опасные частицы проникают в почву и воду, тем самим распространяясь на новые территории, попадания к новым организмам.

Текущая ситуация радиоактивного загрязнения

Под влиянием естественных или антропогенных факторов на планете образовались основные источники радиоактивного загрязнения. К ним относятся:

  • места техногенных катастроф;
  • ядерные полигоны;
  • атомные электростанции;
  • горные системы с активным породами.

В мире

Выделяются несколько очагов зараженных территорий в мире, где сосредоточены источники загрязнения:

  • разрушенные атомные электростанции в Чернобыле (Украина) и Фукусиме (Япония);
  • испытательный полигон в штате Вашингтон (США);
  • атомная станция Селлафилд (Великобритания);
  • могильники на территории постсоветского пространства (Киргизия, Казахстан).

Потенциальные источники загрязнения – мировые АЭС. В мире действует около полутысячи блоков электростанций в 31 стране. Кроме того, 9 стран мира обладают ядерным оружием.

В России

Ситуация с информацией о радиоактивных загрязнениях в России была недостаточной до момента распада СССР, когда произошло раскрытие многих секретных данных. В 1957 году произошла самая серьезная на тот момент техногенная авария на секретном сибирском заводе «Маяк». По современным оценкам она уступает только разрушению АЭС в Чернобыле и Фукусиме. Последствия той аварии ощущаются до сих пор, а окружающая территория превращена в заповедник с ограниченным доступом.

Некоторые российские области затронула Чернобыльская авария: Брянская, Калужская, Тульская, Орловская, Рязанская области. Облако радиационных частиц после взрыва было подхвачено и рассеяно над северными регионами Украины, южными – Беларуси, юго-западными – России.

Методы борьбы с загрязнением

Ликвидировать последствия заражения территории невозможно, поэтому земля изымается из хозяйственного оборота до момента полного самооздоровления. Основная задача работы с радиоактивными материалами – предотвращение утечек. Для этого используются специальные методы обработки отходов, включая их фильтрацию, изоляцию от внешней среды.

Основные мероприятия на зараженной территории:

  • изоляция источников загрязнения и захоронений;
  • дезактивация;
  • пылеподавление;
  • создание преград для утечек за пределы зоны заражения;
  • санитарная обработка персонала и жителей;
  • строительство саркофага.

Радиационный контроль

В России осуществляется документальный и инструментальный радиационный контроль. В законодательной сфере определены основные положения, позволяющие предотвратить заражение радиоактивными частицами:

  • использование инновационных методов в производстве;
  • безопасность в обращении с отходами;
  • санитарная защита.

Инструментальный контроль с помощью дозиметрических замеров проводит Министерство по чрезвычайным ситуациям.

РАДИОАКТИВНЫЕ ВЕЩЕСТВА

РАДИОАКТИВНЫЕ ВЕЩЕСТВА — вещества, содержащие в своем составе радионуклиды.

Радиоактивные вещества могут представлять собой радиоактивные изотопы хим. элементов (см. Изотопы), смеси радиоактивных и стабильных изотопов, хим. соединения, в состав которых включены радионуклиды, а также вещества, содержащие радионуклиды в качестве примеси или добавки (см. Меченые соединения, Радиоактивные препараты, Радиофармацевтические препараты).

Свойства Радиоактивных веществ определяются содержанием в них радионуклидов, их способностью самопроизвольно распадаться с испусканием, напр., альфа-, бета-частиц, гамма-квантов (см. Альфа-излучение, Альфа-распад, Бета-излучение, Бета-распад, Гамма-излучение, Радиоактивность).

Радиоактивные вещества в зависимости от происхождения содержащихся в них радионуклидов делят на две группы: природные (естественные) и искусственные, получаемые с помощью ядерных реакций.

Р. в. широко применяются в народном хозяйстве, а также в медицине и биологии в качестве радиоактивных индикаторов, источников ионизирующего излучения (см.) или источников энергии. В основе использования Р. в. как радиоактивных индикаторов (или меченых соединений) лежит тождественность хим. свойств изотопов одного и того же элемента, что позволяет применять Р. в. в медицине для изучения разнообразных процессов в органах и системах организма (см. Радиоизотопное исследование). В науке, технике и в народном хозяйстве Р. в. применяются в качестве индикаторов при изучении многих физ.-хим. процессов (напр., коррозии, диффузии, реакций обмена), для контроля за качеством и точностью различных технологических операций. В хим. производстве для ускорения процессов полимеризации под воздействием облучения или радиационной стерилизации некоторых лекарственных средств и изделий мед. назначения (см. Стерилизация) внедрены в практику мощные источники гамма-излучения. В мед. радиологии и онкологии Р. в. нашли применение для диагностики и лечения различных заболеваний (см. Лучевая терапия, Радиоизотопная диагностика). Р. в., в частности 238 Pu, в качестве источника энергии, применяются в искусственных водителях ритма — пейсмекерах (см.).

Биол, действие Р. в. связано с ионизацией атомов и молекул в органах и тканях живого организма. При воздействии Р. в. на организм человека в количествах (дозах), превышающих предельно допустимые величины (см. Предельно допустимая доза излучения), возможно возникновение радиационной патологии (см. Лучевая болезнь, Лучевые повреждения). Известны четыре пути воздействия Р. в. на организм: дистантный — от Р. в., расположенных или распределенных вне тела человека; контактный; ингаляционный и пероральный (алиментарный). Степень и выраженность биол, действия Р. в., попавших на кожный покров или внутрь организма, зависят от поглощенной дозы излучения, к-рая определяется количеством Р. в., видом и энергией излучения радионуклида, скоростью его распада, особенностями метаболизма в организме. Поведение Р. в. в местах поступления и внутри организма определяется его агрегатным состоянием, растворимостью, способностью к гидролизу, комплексообразованию и ионному обмену.

Одним из важных параметров метаболизма Р. в. является коэффициент резорбции (всасывания), количественно характеризующий долю Р. в., проникшую в кровь и лимфу, от общего количества Р. в., попавшего на кожу или поступившего в орга низм через органы дыхания и жел.-киш. тракт. Напр., радионуклиды элементов 1 группы периодической системы элементов Д. И. Менделеева, находясь в водных растворах и биол, средах преимущественно в ионном состоянии, практически полностью резорбируются в кровь из верхних дыхательных путей, легких и жел.-киш. тракта, равномерно распределяются по органам и тканям и выделяются из организма с мочой. В то же время радионуклиды редкоземельных элементов и трансплутониевые элементы обладают низким коэффициентом резорбции (0,0005—0,01), величина к-рого существенно зависит от хим. формы поступившего соединения. Эти элементы после резорбции в кровь избирательно накапливаются в печени и в костной ткани.

При работе с Р. в. одним из основных путей возможного поступления в организм является ингаляционный. Отложение Р. в. в легочной ткани зависит от размера (дисперсности) частиц, содержащихся во вдыхаемом воздухе, и их растворимости. Для большинства Р. в. характерна выраженная неравномерность (органотропность) распределения в органах и тканях. В зависимости от преимущественного накопления Р. в. в тех или иных органах и тканях их разделяют на остеотропные, гепатотропные, тиреотропные и т. п. Этим обстоятельством в значительной мере определяются особенности биол, действия инкорпорированных Р. в. Напр., при попадании внутрь организма больших количеств равномерно распределяющихся Р. в. развивается типичный острый лучевой синдром, а при попадании в организм органотропных Р. в. — радиационная патология с преимущественным поражением органа депонирования (см. Критический орган). В случае длительного воздействия или при поступлении в организм сравнительно небольших количеств Р. в. возникает хрон, неспецифическое воспаление в органах преимущественного депонирования с исходом в склеротические процессы, напр, пневмосклероз (см.), цирроз печени (см.), нефросклероз (см.) или злокачественные опухоли (см.).

Профилактика поражений радиоактивными веществами надежно обеспечивается соблюдением норм радиационной безопасности (см.), правил работы с радиоактивными материалами и источниками ионизирующего излучения, а также комплексом инженерно-технических решений в области противорадиационной защиты и контроля (см. Дозиметрический контроль, Противолучевая защита). Нормы радиационной безопасности (НРБ) основаны на принятых предельно допустимых дозах облучения и регламентируют поступление и содержание Р. в. в организме.

Для удаления Р. в. с поверхности кожи разработаны и внедрены в практику эффективные средства дезактивации кожи, действие которых основано на механизмах адсорбции, комплексообразования и ионного обмена (см. Дезактивация). Для предотвращения резорбции Р. в. в жел.-киш. тракте рекомендуется применение ионообменных сорбентов, напр, адсобара и полисурьмина для поглощения радиоактивных изотопов стронция, бария, радия, а также ферроцина — для связывания цезия и др. Для стимуляции выведения из организма резорбированных радионуклидов применяются различные комплексоны (см.), напр, пентацин, унитиол, оксатиол и др.

Булдаков Л. А. и др. Проблемы токсикологии плутония, М., 1969, библиогр.; Ильин Л. А. Основы защиты организма от воздействия радиоактивных веществ, М., 1977; Неотложная помощь при острых радиационных воздействиях, под ред. Л. А. Ильина, М., 1976, библиогр.; Отдаленные последствия лучевых поражений, под ред. Ю. И. Москалева, М., 1971; Пархоменко Г. М., Егорова М. С. и Копаев В. В. Гигиена труда при работе с трансплутониевыми элементами, М., 1974, библиогр.; Петросьянц А. М. Проблемы атомной науки и техники, М., 1979.

Читайте также:  Открыть счет в иностранном банке физическому лицу: особенности, описание процедуры и рекомендации
Оцените статью
Добавить комментарий